Cell-Wall Glycolipid Mutations and Their Effects on Virulence of E. faecalis in a Rat Model of Infective Endocarditis
نویسندگان
چکیده
Enterococci are among the major pathogens implicated in cardiac infections and biofilm formation. E. faecalis has been shown to play an important role in infectious endocarditis. Several distinct mechanisms for biofilm formation have been identified in E. faecalis. Our group has previously characterized two distinct bacterial glucosyltransferases playing key roles in the production of the major cell wall glycolipids and leading to reduced biofilm production. To assess if this mechanism is involved in the pathogenesis of enterococcal endocarditis we compared the wild-type strain of E. faecalis 12030 with two mutants in gene EF2891 and EF2890 respectively in a rat model of infective endocarditis. The results showed less endocarditic lesions and reduced colony counts per vegetation in the two mutants. indicating that the modification of bacterial surface lipids results in significantly reduced virulence in infective endocarditis. These results underscore the important role of biofilm formation in the pathogenicity of enterococcal endocarditis and may indicate an interesting target for novel therapeutic strategies.
منابع مشابه
Virulence Factors Associated with Enterococcus Faecalis Infective Endocarditis: A Mini Review
INTRODUCTION The enterococci are accountable for up to 20% of all cases of infective endocarditis, with Enterococcus faecalis being the primary causative isolate. Infective endocarditis is a life-threatening infection of the endocardium that results in the formation of vegetations. Based on a literature review, this paper provides an overview of the virulence factors associated with E. faecalis...
متن کاملThe fibronectin-binding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis.
EfbA is a PavA-like fibronectin adhesin of Enterococcus faecalis previously shown to be important in experimental urinary tract infection. Here, we expressed and purified the E. faecalis OG1RF EfbA and confirmed that this protein binds with high affinity to immobilized fibronectin, collagen I, and collagen V. We constructed an efbA deletion mutant and demonstrated that its virulence was signifi...
متن کاملDecreased virulence of a gls24 mutant of Enterococcus faecalis OG1RF in an experimental endocarditis model.
In the current study, the gls24 disruption mutant TX10100, previously shown to be more sensitive to bile salts and attenuated in a mouse peritonitis model, showed an approximately fivefold higher 50% infective dose than wild-type OG1RF in a rat endocarditis model. When administered as a mixture, TX10100, unlike a downstream glsB mutant, was significantly outnumbered by OG1RF in vegetations, org...
متن کاملPilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis.
Enterococci commonly cause hospital-acquired infections, such as infective endocarditis and catheter-associated urinary tract infections. In animal models of these infections, a long hairlike extracellular protein fiber known as the endocarditis- and biofilm-associated (Ebp) pilus is an important virulence factor for Enterococcus faecalis. For Ebp and other sortase-assembled pili, the pilus-ass...
متن کاملEnterococcus faecalis Endocarditis Severity in Rabbits Is Reduced by IgG Fabs Interfering with Aggregation Substance
BACKGROUND Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endoc...
متن کامل